International Symposium on Interfacial Joining and Surface Technology ---Solid State Joining, Brazing and Soldering, Surface Treatment, Advanced Packaging---

November 27-29, 2013 Icho Kaikan Osaka University, Japan

Latest Study of Fe-Cr Based Filler Metals

Kotaro Matsu Tokyo Braze Co., Ltd.

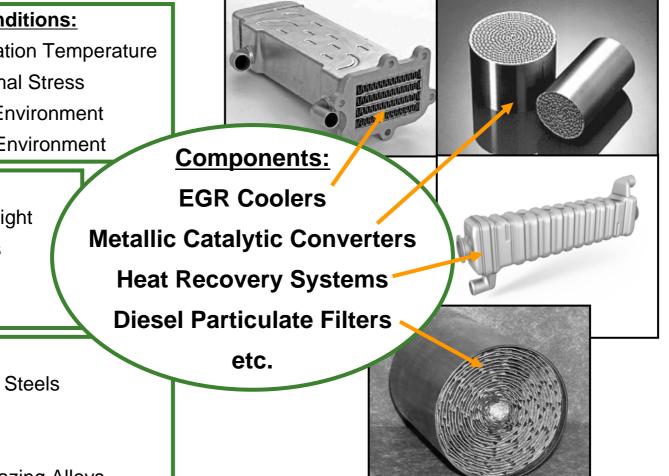
Background

- In automobile industry, Ni based filler metals have been used for many applications to meet system requirements.
- Recent past history of soaring Ni price, high volume users of Ni based filler metals had seen dramatic increase in their brazing cost.
- In response to these changing market conditions, a new high strength, low cost alternative to traditional Ni based filler metals needed to be developed.

 \Rightarrow Fe-Cr based filler metal was developed.

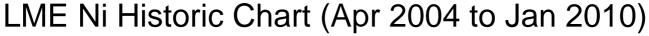
Background

Service Conditions:


- High Operation Temperature
- High Thermal Stress
- Oxidative Environment
- Corrosive Environment

Structures:

- Compact & Lightweight
- Thin-Walled Sheets
- Metallic Foams
- Feltmetals


Materials:

- Stainless Steels
- FeCrAl
- Inconels
- Nickel Brazing Alloys

Background

Ni price jumped up almost 4 times higher since Oct 2005. The peak was June 2007 and price dropped down by the end of 2008.

Concept of filler metal design

Fe-Cr-Ni-Mo-Si-P System

- **Fe, Cr** Base elements and Cr content must be 20wt% at least to improve corrosion resistance
- **Ni** Main element and contains as less as possible with the balance of Fe and Cr
- Mo Elements added to form fine grain structure to obtain higher strength and improved corrosion resistance
- **P, Si** Main elements of temperature depressants

Developed Fe-Cr based filler metals

Туре	Chemical Compositions (wt%)					S	Solidus	Liquidus	Brazing Temp.
IronBraze	Fe	Cr	Ni	Мо	Si	Ρ	°C	S	٦°
TB-2720	27	20	43	-	-	10	1,010	1,065	1,100 – 1,120
TB-3025	30	25	30	2	6	7	1,010	1,065	1,100 – 1,120
TB-3520	35	20	30	2	5	8	1,010	1,060	1,100 – 1,120
TB-4025	40	25	20	2	6	7	1,030	1,085	1,120 – 1,140
TB-4520	45	20	20	2	5	8	1,020	1,080	1,100 – 1,130
TB-5020	50	20	15	2	5	8	1,035	1,100	1,130 – 1,150
TB-5520	55	20	10	2	5	8	1,060	1,115	1,150 – 1,180
TB-6020	60	20	5	2	5	8	1,090	1,130	1,150 – 1,200

Current Fe-Cr based filler metals

IronBraze

Туре		Chemic	Solidus	Liquidus				
IronBraze	Fe	Cr	Ni	Мо	Si	Р	°C	°C
TB-2720	27 Bal.	20 20.18	43 43.90	-	-	10 8.90	990	1,040
TB-4520	45 Bal.	22 21.91	22 21.76	0.5 0.58	4.5 4.31	6 6.24	1,038	1,051

Foil form of TB-2720

Other Fe-Cr based filler metals

Product Name		Che	mical	Solidus	Liquidus					
	Fe	Cr	Ni	Мо	Si	Р	Cu	В	°C	°C
VZ2106	35	11	44	1.5	6.4	-	1	1.5	1,044	1,154
VZ2099	51	11.5	29	1.5	2.8	1.8	-	1.9	934	1,146
BrazeLet F300	34	24	20	-	5	7	10	-	B.T.:1,120	
BrazeLet F302	54	15	10	-	7	9	5	-	B.T.:1,100	
Amdry 805	38	29	18	-	7	6	RE	:0.2	M.P.:1,104	
AlfaFusion	Bal	17	12	2.2	Mn	:1.6	Si+B:?		B.T.:1,190	
FP-641	Bal	18	15	2	5	6.5	2	-	1,030	1,060
FP-642	Bal	18	20	2	2	8	2	-	1,030	1,060
FP-633	20	29	Bal	-	4	6	-	-	1,020	1,060

%RE: Rare Earth%B.T.: Brazing Temperature%M.P.: Melting Point

Current issues

Price

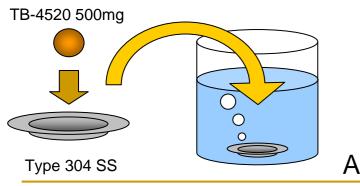
Not very competitive to conventional Ni based filler metals due to recent Ni price.

Corrosion resistance

Corrosion resistance characteristic changes depends on corrosion solutions and type of base metals.

Joint strength

It was found that the value of joint strength fluctuated due to brazing conditions.

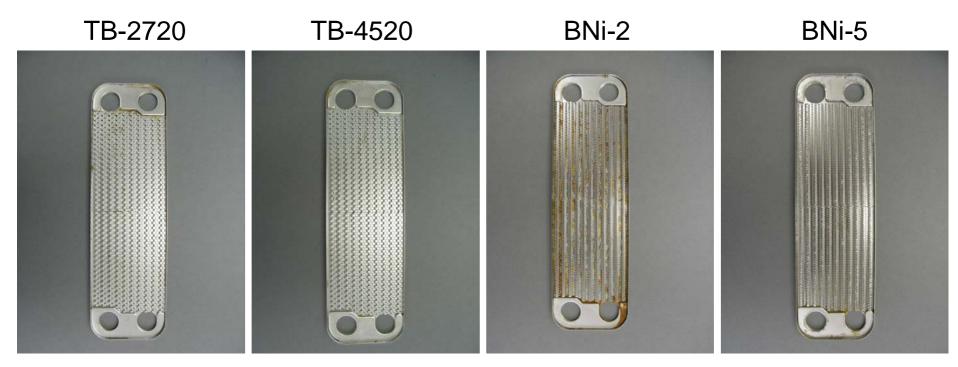


Corrosion test results (Dipping test)

Appearance and weight loss after 72 hours exposure

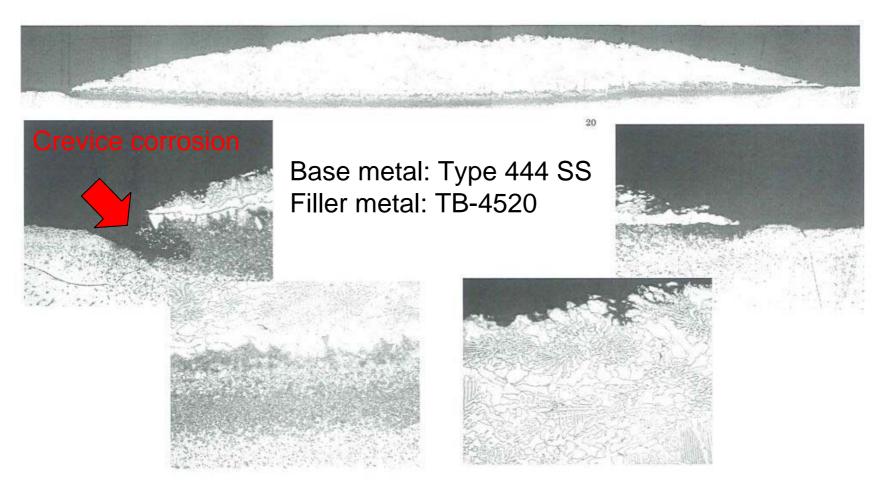
Test Solutions	H ₂ SO ₄ (5%)	NHO ₃ (5%)	HCI (5%)	NaClO (5%)	NH ₄ OH (5%)
Appearance	No change	No change	Rust	Minute rust	No change
Weight loss (mg)	No change	No change	~10	Unable measure	No change
Results	Excellent	Excellent	Attacked	Good	Excellent

Dipping test method

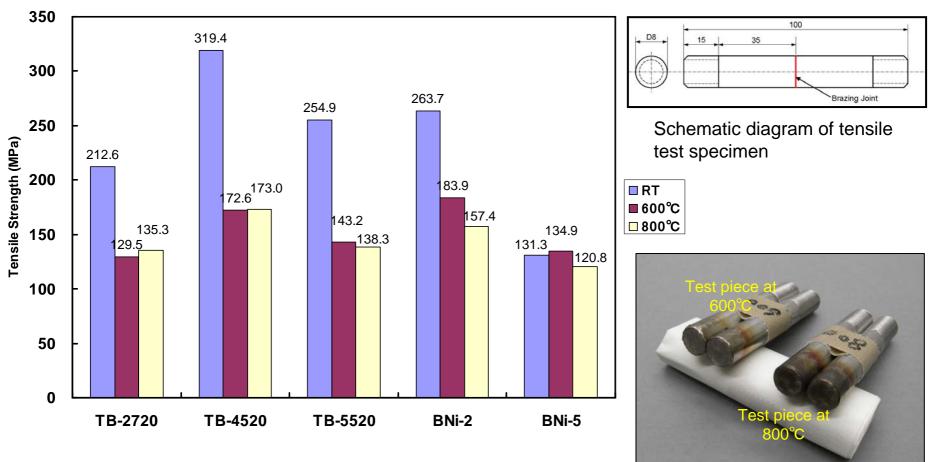

Appearance after the test

 H_2SO_4 : Sulfuric Acid NHO₃: Nitric Acid HCI: Hydrochloric Acid NaCIO: Sodium Hypochlorite NH₄OH: Aqueous Ammonia

Corrosion test results (Salt splay test)

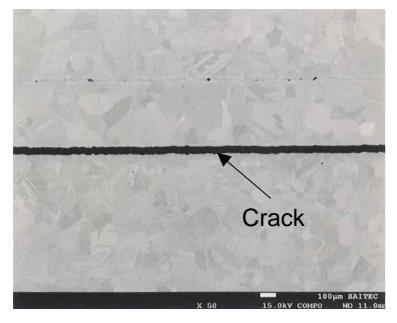

Appearance after 168 hours salt splay test

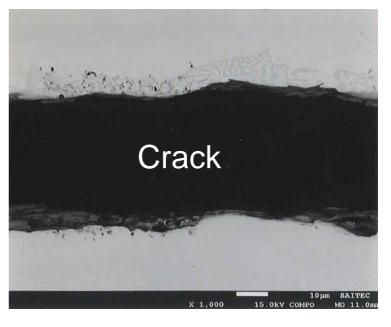
TB-2720 and TB-4520 with type 304 SS show excellent corrosion resistance against to salt splay test.


Corrosion test results (VDA test)

Crevice corrosion at the edge of filet and base metal on type 444 SS test piece was observed by artificial exhaust gas condensate.

Joint strength (Tensile test)

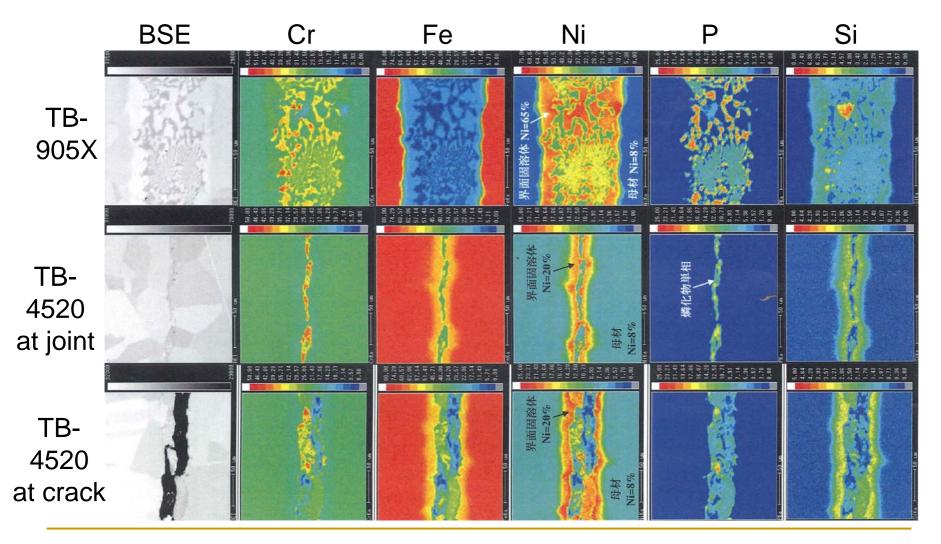



TB-2720 and TB-4520 obtain good joint strength compared to Ni based filler metals.

東京バレイズ株式会社 Tokyo BRAZE CO., LTD.

Poor joint strength

Cross-section at the fractured joint


100µm

10µm

Brazing conditionsLoad: \Rightarrow 10kgf/cm²Base Metal: Type 316 SSBrazing temp & time: 1,120°C & 60minBrazing filler metal: TB-4520

Poor joint strength

Summery

- Fe-Cr based filler metals have good corrosion resistance, but corrosion resistance characteristic changes depends on corrosion solutions and type of base metals.
- Joint strength of Fe-Cr based filler metals fluctuate due to brazing conditions such as long brazing time and heavy load at the joint to form thin brazing layer.
- Fe-Cr based filler metals still need to improve or modify so that to know further basic information is necessary.

